If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6v^2+7v-6=0
a = 6; b = 7; c = -6;
Δ = b2-4ac
Δ = 72-4·6·(-6)
Δ = 193
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{193}}{2*6}=\frac{-7-\sqrt{193}}{12} $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{193}}{2*6}=\frac{-7+\sqrt{193}}{12} $
| x6+10=−6 | | 2x+20=-2(10+x) | | 4(6x+1)=120 | | (5y-3)+(3y+27)=180 | | 2x^2-3x-405=0 | | x/6+10=−6 | | 5x^2-43x=24 | | 8+x÷2=-12 | | B÷7=8;b=56 | | X/2x45=175 | | 4r+19+9r-6+8r+3=180 | | -6-7(c+10)=-6-7(c+10) | | N/2x45=175 | | k-1/3=5/3 | | x-4+4x+11+3x+2=180 | | 30-3y=12 | | -3y-10=-13 | | 21r^2-13r-28=-8 | | 2x+5+5x+7+3x-2=180 | | 3x^2-9=2x^2+27 | | 3x-21+2x+9=180 | | 2x+5+5x+7+3x-2=810 | | a+2=2a-10 | | 24=-5x-9 | | 0.10x^2-5x+15=0 | | 3-x=-43 | | 3/4m+1/2=3/8 | | 3-x=-46 | | (4x+3)+(4x+3)=(12) | | 6t^2-35t-6=0 | | 3x-2(4x+3)-(x+5)=6-(2x+) | | 50x^2-47x=0 |